organic compounds

T = 120 (2) K

 $R_{\rm int} = 0.082$

 $\Delta \rho_{\text{max}} = 0.36 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.38 \text{ e } \text{\AA}^{-3}$

3211 Friedel pairs

Flack parameter: 0.10 (7)

 $0.48 \times 0.20 \times 0.18 \text{ mm}$

20485 measured reflections

7560 independent reflections

6007 reflections with $I > 2\sigma(I)$

Absolute structure: Flack (1983),

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4,4,6,6-Tetrachloro-2-[(2,4-dimethylphenyl)sulfanyl]-*N*-[4-(2,2,4,4-tetrachloro-1,3,5,7,11-pentaaza- $2\lambda^5$, $4\lambda^5$, $6\lambda^5$ triphosphaspiro[5.5]undeca-1,3,5-trien-7-yl)butyl]-1,3,5, $2\lambda^5$, $4\lambda^5$, $6\lambda^5$ -triazatriphosphinin-2-amine

Simon J. Coles,^a* David B. Davies,^b Michael B. Hursthouse,^a Hanife İbişoğlu,^c Adem Kılıç^c and Robert A. Shaw^b

^aSchool of Chemistry, University of Southampton, Southampton SO17 1BJ, England, ^bSchool of Biological and Chemical Sciences, Birkbeck College (University of London), Malet Street, London WC1E 7HX, England, and ^cDepartment of Chemistry, Gebze Institute of Technology, Gebze, Turkey Correspondence e-mail: s.i.coles@soton.ac.uk

Received 19 July 2007; accepted 7 August 2007

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.006 Å; disorder in main residue; R factor = 0.043; wR factor = 0.107; data-to-parameter ratio = 20.7.

Reaction of the spermidine-bridged cyclophosphazene compound $(N_3P_3Cl_5)$ spd $(N_3P_3Cl_4)$ (spd = spermidine residue) with 2,4-dimethylthiophenol results in substitution of the P-Cl bond at the bridgehead >P(NHR)Cl group to give the title compound, $C_{15}H_{25}C_{l8}N_9P_6S$. An N-H···N hydrogen bond helps to establish the packing.

Related literature

For background chemistry, see: Labarre *et al.* (1984); Beşli *et al.* (2004); Guerch *et al.* (1984); Kılıç *et al.* (1991); Cameron *et al.* (1989); İbişoğlu (2007); Guerch & Labarre (1989).

Experimental

Crystal data

 $C_{15}H_{25}Cl_8N_9P_6S$ $M_r = 832.92$ Orthorhombic, $P2_12_12_1$ a = 8.5829 (17) Å b = 15.587 (3) Å c = 25.277 (5) Å $V = 3381.6 (12) \text{ Å}^3$ Z = 4 Mo $K\alpha$ radiation $\mu = 1.04 \text{ mm}^{-1}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1997) $T_{\rm min} = 0.539, T_{\rm max} = 0.835$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.107$ S = 0.997560 reflections 366 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$
 $N4-H4N\cdots N9^i$ 0.77 (4)
 2.26 (4)
 3.009 (4)
 164 (3)

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Data collection: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT* (Hooft, 1998); cell refinement: *DENZO* and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *publCIF* (Westrip, 2007).

The authors thank Shin Nisso Kako Co. Ltd for gifts of $N_3P_3Cl_6$, the EPSRC for funding the National Crystallographic Service (Southampton, UK) and Gebze Institute of Technology (GIT) Research Fund for partial support (HI and AK).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2491).

References

- Beşli, S., Coles, S. J., Davies, D. B., Eaton, R. J., Hursthouse, M. B., İbişoğlu, H., Kılıç, A. & Shaw, R. A. (2004). *Chem. Eur. J.* 10, 4915–4920.
- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Cameron, T. S., Linden, A., Guerch, G., Bonnet, J. P. & Labarre, J.-F. (1989). J. Mol. Struct. 212, 295–304.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Guerch, G. & Labarre, J.-F. (1989). J. Mol. Struct. 195, 11-19.
- Guerch, G., Labarre, J.-F., Sournies, F., Lahana, R., Enjalbert, R., Galy, J. & Declercq, J. P. (1984). *Inorg. Chim. Acta*, 83, L33–L36.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- İbişoğlu, H. (2007). Heterocycles. In the press.
- Kılıç, A., Kılıç, Z. & Shaw, R. A. (1991). Phosphorus Sulfur Silicon, 57, 111– 117.
- Labarre, J.-F., Guerch, G., Sournies, F., Lahana, R., Enjalbert, R. & Galy, J. (1984). J. Mol. Struct. 116, 75–88.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Westrip, S. P. (2007). publCIF. In preparation.

Acta Cryst. (2007). E63, o3753 [doi:10.1107/S1600536807038962]

4,4,6,6-Tetrachloro-2-[(2,4-dimethylphenyl)sulfanyl]-*N*-[4-(2,2,4,4-tetrachloro-1,3,5,7,11-pentaaza- $2\lambda^5$, $4\lambda^5$, $6\lambda^5$ -triphosphaspiro[5.5]undeca-1,3,5-trien-7-yl)butyl]-1,3,5, $2\lambda^5$, $4\lambda^5$, $6\lambda^5$ -triazatriphosphinin-2-amine

S. J. Coles, D. B. Davies, M. B. Hursthouse, H. Ibisoglu, A. Kiliç and R. A. Shaw

Comment

The reaction of biogenic spermidine with cyclophosphazene, $N_3P_3Cl_6$, in aprotic solvents gives a spermidine-bridged cyclophosphazene compound, $(N_3P_3Cl_5)spd(N_3P_3Cl_4)$, (spd = trifunctional spermidine residue), (Labarre *et al.*, 1984; Guerch *et al.*, 1984; Kılıç *et al.*, 1991) and in protic solvents such as CHCl₃ proceeds cleanly to yield a spiro-*cis*-ansa spermidine derivative, 2,2,6-trichloro-1,3,5,7,11,16-hexaaza-4,6-diphosphatricyclohexadeca-2,4,6-triene (Guerch & Labarre, 1989; Cameron *et al.*,1989). We have investigated previously the reactions of the spiro-*cis*-ansa compound with primary and secondary amines, mono- and difunctional alcohols (*e.g.* PhNH₂, PrⁿNH₂, HNC₄H₈, HNMe₂, MeOH, and HOCH₂(CF₂)₂CH₂OH) (Beşli *et al.*, 2004; İbişoğlu, 2007).

In this work reaction of the spermidine-bridged cyclophosphazene with 2,4-dimethylthiophenol gave a novel cyclophosphazene-thiolate derivative, (I), (Fig. 1), in which the bridgehead P—Cl bond was replaced with a thiolate group. Thus the SR reagent has attacked the PCl(NHR) group, rather than the more electrophilic PCl₂ moiety, which is an attack not on the phosphorus centre, but on the hydrogen, giving the product *via* a proton abstraction/chloride elimination reaction.

In the cyclophosphazene rings of (I) the P—N bond lengths are in the range 1.554 (3)–1.632 (3) Å but separate into two distinct groups for each ring; the lengths of the four P—N bonds involving the >PCl₂ moiety in both rings are in a narrow range [1.554 (3)–1.585 (3) Å] with averages of *ca*. 1.57(±0.01) Å compared to the two P—N bond lengths involving the >P(N)(X) moiety [X=SPh or NH(bridge)], which are in the range 1.610 (3)–1.632 (3)Å and average *ca*. 1.62(±0.01) Å. The increase in bond length involving the >P(N)(X) moiety depend on electron release from either the SPh or the NH(bridge) atoms to the phosphazene rings. The donation of electrons from the >P(N)(X) moiety to the phosphazene ring is also manifested by the decrease in endocyclic N—P(N)(X)—N bond angles for the two rings [X = SPh, 114.6 (2)°; X = NH(bridge), 110.7 (2)°] compared to those found for the N—P(Cl₂)-N, 119.9(±0.3)°.

The effect of the electron-donating substituents is also reflected in differences in the P···P distances across the ring, even for rings that are nominally planar. It is found that the P···P distances involving the P(N)(X) moiety are 2.781 (6)/2.791 (6) Å (X = SPh) and 2.816 (5)/2.828 (6) Å (X = NH(bridge) are significantly greater than those involving the >PCl₂ moiety, 2.71–2.72 Å.

An N—H…N hydrogen bond (Table 1) helps to establish the packing.

Experimental

A solution of (N₃P₃Cl₅)spd(N₃P₃Cl₄) (Labarre *et al.*, 1984, Kılıç *et al.* 1991) (1 g, 1.367 mmol) in 10 ml dry THF was added dropwise to a stirred solution of triethylamine (1.38 g, 13.63 mmol) in 8 ml dry THF at 195 K. Then, 2,4-dimethylthiophenol

(1.88 g, 13,6 mmol) in 10 ml dry THF was added and the reaction mixture was stirred under an atmosphere of argon at room temperature for 5 days. Triethylamine hydrochloride was filtered off and the solvent removed under reduced pressure at 303 K. One product,4,4,6,6-tetrachloro-2-[(2,4-dimethylphenyl)thio]-*N*-[4-(2,2,4,4-tetrachloro-1,3,5,7,11-pentaaza- $2\lambda^5,4\lambda^5,6\lambda^5$ -triphosphaspiro[5.5]undeca-1,3,5-trien-7-yl)butyl]-1,3,5, $2\lambda^5,4\lambda^5,6\lambda^5$ -triazatriphosphinin-2-amine, I, was detected by TLC using dichloromethane as mobile phase [R_f =0.49] and was separated by column chromatography on silica gel using CHCl₃ as eluant. Colourless rods of (I) were re-crystallized from dichloromethane-*n*-hexane (1:1 *v/v*) (m.p. 405–406 K, 0.74 g, yield 65%).

Elemental analysis calcd (%) for C₁₅H₂₅Cl₈N₉P₆S;C, 21.63; H, 3.03; N, 15.13%; *found:* C, 21.36; H, 3.31; N, 15.22%; MS $(M+H)^+$,833 M^+ ; 832.¹H NMR at 298 K in CDCl₃: δ 2.3 (s, 3H, CH₃); δ 2.5 (s, 3H, CH₃); δ 7.45 (q, 1H, CH-6); δ 7.07 (s, 1H, CH-3); δ 6.97 (d, 1H, CH-5); δ 3.3–2.8 p.p.m. (m, 8H)(4x N—CH₂); δ 1.6–1.8 (m, 6H)(3x C—CH₂); δ 3,0 (2*H*, 2x NH). The proton decoupled ³¹P NMR spectrum at 298 K in CDCl₃ has two different spin A₂X spin systems: >*P*(Nspiro) cyclophosphazene ring; (δP (Nspiro)(P₁), 10.7 p.p.m. (triplet); δPCl_2 (P₂), 22.2 p.p.m. (doublet), ²J(P1P2) 40.3 Hz: >P(SC₈H₉) cyclophosphazene ring; δP (NHSC₈H₉)(P₃), 30.7 p.p.m. (triplet); δPCl_2 (P4), 20.3 p.p.m. (doublet), ²J(P3P4) 19.3 Hz.

Refinement

The C-bound hydrogen atoms and H6N were fixed in idealized positions [0.88 (NH), 0.98 (CH₃), 0.99 Å (CH₂) & 0.95 Å (CH)] and refined using the riding model with U_{iso} (H) either set to $1.2U_{eq}$ (carrier) or $1.5U_{eq}$ (methyl C). Atom H4N was located in a difference map and freely refined. The C14 methylene group exhibits positional disorder within its ring system and has been modelled as two discrete sites with an occupancy ratio of 65:35. This disorder results in large anisotropic displacement parameters for this atom and those connected to it.

Figures

Fig. 1. View of (I) (50% probability displacement ellipsoids; H atoms omitted for clarity).

4,4,6,6-Tetrachloro-2-[(2,4-dimethylphenyl)sulfanyl]-*N*-[4-(2,2,4,4-\ tetrachloro-1,3,5,7,11-pentaaza- $2\lambda^5,4\lambda^5,6\lambda^5$ -\ triphosphaspiro[5.5]undeca-1,3,5-trien-7-yl)butyl]-\ 1,3,5, $2\lambda^5,4\lambda^5,6\lambda^5$ -triazatriphosphinin-2-amine

Crystal data	
C ₁₅ H ₂₅ Cl ₈ N ₉ P ₆ S	$F_{000} = 1680$
$M_r = 832.92$	$D_{\rm x} = 1.636 {\rm ~Mg~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 18434 reflections

a = 8.5829 (17) Å	$\theta = 2.9 - 27.5^{\circ}$
b = 15.587 (3) Å	$\mu = 1.04 \text{ mm}^{-1}$
c = 25.277 (5) Å	T = 120 (2) K
$V = 3381.6 (12) \text{ Å}^3$	Rod, colourless
Z = 4	$0.48 \times 0.20 \times 0.18 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer	$R_{\rm int} = 0.082$
ϕ and ω scans	$\theta_{max} = 27.5^{\circ}$
Absorption correction: multi-scan (SORTAV; Blessing, 1997)	$\theta_{\min} = 3.1^{\circ}$
$T_{\min} = 0.539, \ T_{\max} = 0.835$	$h = -11 \rightarrow 11$
20485 measured reflections	$k = -20 \rightarrow 20$
7560 independent reflections	$l = -31 \rightarrow 32$
6007 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.043$	$w = 1/[\sigma^2(F_o^2) + (0.0538P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.107$	$(\Delta/\sigma)_{\rm max} = 0.010$
<i>S</i> = 0.99	$\Delta \rho_{max} = 0.36 \text{ e} \text{ Å}^{-3}$
7560 reflections	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$
366 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 3211 Friedel pairs

Secondary atom site location: difference Fourier map Flack parameter: 0.10 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional	atomic	coordinates	and is	otropic o	or equivalent	isotropic	dis	placement	parameters ((A^2))
					1					. /	· · · ·

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
C1	0.7799 (5)	0.2378 (2)	0.17416 (15)	0.0340 (9)	
C2	0.6726 (5)	0.2176 (3)	0.13485 (16)	0.0385 (10)	
C3	0.7270 (6)	0.2077 (3)	0.08372 (18)	0.0504 (12)	
Н3	0.6553	0.1926	0.0566	0.061*	

C4	0.8822 (7)	0.2192 (3)	0.0706 (2)	0.0563 (14)	
C5	0.9872 (6)	0.2373 (3)	0.1105 (2)	0.0579 (14)	
Н5	1.0947	0.2436	0.1024	0.069*	
C6	0.9363 (5)	0.2464 (3)	0.1628 (2)	0.0468 (11)	
H6	1.0088	0.2584	0.1903	0.056*	
C7	0.5021 (6)	0.2092 (3)	0.1452 (2)	0.0607 (14)	
H7A	0.4483	0.1949	0.1122	0.091*	
H7B	0.4618	0.2636	0.1590	0.091*	
H7C	0.4844	0.1637	0.1713	0.091*	
C8	0.9353 (9)	0.2165 (3)	0.0138 (2)	0.095 (3)	
H8A	1.0482	0.2254	0.0122	0.142*	
H8B	0.8826	0.2619	-0.0063	0.142*	
H8C	0.9094	0.1606	-0.0016	0.142*	
С9	0.5008 (4)	0.1678 (3)	0.33785 (15)	0.0372 (9)	
H9A	0.4487	0.1147	0.3502	0.045*	
H9B	0.4545	0.1838	0.3034	0.045*	
C10	0.4714 (4)	0.2383 (3)	0.37703 (14)	0.0333 (9)	
H10A	0.3609	0.2560	0.3744	0.040*	
H10B	0.5363	0.2884	0.3673	0.040*	
C11	0.5061 (4)	0.2141 (2)	0.43411 (14)	0.0271 (8)	
H11A	0.4547	0.1589	0.4425	0.032*	
H11B	0.6198	0 2063	0 4385	0.032*	
C12	0 4492 (4)	0.2824(2)	0 47241 (14)	0.0220(8)	
H12A	0 4948	0.3384	0.4623	0.032*	
H12B	0 3345	0.2874	0.4695	0.032*	
C13	0 4204 (4)	0.1851 (2)	0 54963 (15)	0.0310 (8)	
H13A	0.3142	0.1804	0.5346	0.037*	
H13R	0.4809	0.1358	0.5360	0.037*	
C14'	0.4070(17)	0.1747 (8)	0.6071 (5)	0.034(4)	0 341 (13)
H14A	0.3043	0.1973	0.6182	0.041*	0.341(13)
H1/R	0.4080	0.1175	0.6151	0.041*	0.341(13)
C14	0.5145 (9)	0.1547 (4)	0.5968 (2)	0.041 0.033 (2)	0.541(13)
	0.5145 ())	0.1047 (4)	0.6108	0.039*	0.659(13)
H14D	0.4004	0.1400	0.5846	0.039*	0.059(13)
C15	0.020)	0.1400	0.53906 (18)	0.037	0.037 (13)
H15A	0.5204 (5)	0.2135 (3)	0.6376	0.053*	
HISA HISB	0.0221	0.1805	0.6763	0.053*	
N1	0.4908 0.0248 (3)	0.2109	0.0703 0.28052 (12)	0.033° 0.0283 (7)	
N2	0.9248(3)	-0.0284(2)	0.28032(12) 0.21604(15)	0.0283(7) 0.0443(9)	
N2	0.3007(4)	0.0284(2)	0.21004(13) 0.23670(12)	0.0443(9) 0.0312(7)	
N/	0.6684(4)	0.0000(2)	0.23077(12)	0.0312(7)	
N5	0.0034(4)	0.1307(2) 0.26331(18)	0.53008(12) 0.52811(11)	0.0293(7)	
NG	0.4910(3)	0.20331(18) 0.2024(2)	0.32011(11) 0.62226(12)	0.0277(7)	
H6N	0.5001 (4)	0.3034 (2)	0.62530 (12)	0.0308 (7)	
N7	0.6552 (3)	0.3343	0.5/310 (12)	0.0315 (7)	
NR	0.0332(3) 0.4825(4)	0.5/076 (19)	0.54510(15) 0.52518(15)	0.0313(7)	
NO	0.4023(4)	0.34770(10) 0.40272(19)	0.55510(15) 0.57517(12)	0.0373(0) 0.0201(7)	
D1	0.337(3) 0.7/388(10)	0.70272(10) 0.13582(6)	0.37317(13) 0.27261(Λ)	0.0291(7) 0.0250(2)	
D7	1.00284(12)	0.13362(0) 0.03262(6)	0.27201(4) 0.25224(4)	0.0230(2)	
1 4	1.00204 (12)	0.05202 (0)	0.23224 (4)	0.0520 (2)	

P3	0.72065 (12)	-0.01195 (6)	0.21149 (4)	0.0334 (2)
P4	0.51752 (10)	0.34622 (5)	0.56690 (4)	0.0243 (2)
P5	0.64364 (10)	0.50149 (6)	0.52941 (4)	0.0304 (2)
P6	0.33674 (10)	0.49668 (6)	0.55497 (4)	0.0271 (2)
S1	0.72088 (12)	0.25711 (6)	0.24069 (4)	0.0352 (2)
Cl1	1.11015 (15)	-0.03697 (8)	0.30779 (5)	0.0569 (3)
Cl2	1.18636 (13)	0.07085 (8)	0.20992 (6)	0.0611 (3)
C13	0.61143 (17)	-0.11661 (8)	0.23825 (5)	0.0639 (4)
Cl4	0.66310 (15)	-0.01667 (7)	0.13493 (4)	0.0517 (3)
C15	0.80436 (11)	0.56671 (7)	0.56962 (5)	0.0464 (3)
C16	0.71814 (13)	0.52044 (7)	0.45493 (4)	0.0490 (3)
Cl7	0.17627 (11)	0.49868 (6)	0.49709 (4)	0.0395 (2)
C18	0.22764 (12)	0.56464 (6)	0.61084 (4)	0.0415 (2)
H4N	0.722 (4)	0.129 (2)	0.3513 (16)	0.020 (10)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.051 (2)	0.0225 (19)	0.028 (2)	0.0072 (16)	0.0079 (18)	0.0050 (16)
C2	0.055 (3)	0.032 (2)	0.029 (2)	0.0059 (18)	0.0015 (19)	0.0086 (17)
C3	0.090 (4)	0.032 (2)	0.029 (2)	0.008 (2)	-0.001 (2)	0.0071 (18)
C4	0.103 (4)	0.021 (2)	0.045 (3)	-0.003 (2)	0.029 (3)	0.009 (2)
C5	0.068 (3)	0.034 (3)	0.071 (4)	-0.005 (2)	0.037 (3)	0.005 (2)
C6	0.053 (3)	0.030 (2)	0.057 (3)	-0.0063 (19)	0.007 (2)	0.003 (2)
C7	0.054 (3)	0.076 (4)	0.051 (3)	0.015 (3)	-0.010 (3)	0.004 (3)
C8	0.188 (7)	0.038 (3)	0.058 (4)	0.003 (4)	0.064 (5)	0.004 (3)
С9	0.027 (2)	0.059 (3)	0.026 (2)	-0.0028 (18)	0.0038 (16)	-0.0086 (19)
C10	0.032 (2)	0.042 (2)	0.025 (2)	0.0060 (16)	0.0009 (15)	-0.0065 (17)
C11	0.0256 (17)	0.0287 (19)	0.027 (2)	-0.0005 (14)	0.0036 (15)	0.0010 (16)
C12	0.0308 (18)	0.029 (2)	0.0209 (19)	0.0035 (14)	-0.0021 (14)	0.0002 (15)
C13	0.036 (2)	0.0249 (19)	0.032 (2)	-0.0008 (15)	0.0017 (16)	0.0012 (16)
C14'	0.044 (10)	0.034 (7)	0.025 (6)	-0.002 (5)	0.008 (5)	-0.003 (5)
C14	0.039 (5)	0.031 (3)	0.028 (3)	0.001 (3)	0.008 (3)	0.004 (3)
C15	0.066 (3)	0.034 (2)	0.034 (2)	-0.006 (2)	-0.011 (2)	0.0093 (19)
N1	0.0297 (15)	0.0263 (16)	0.0288 (17)	0.0001 (12)	-0.0021 (13)	-0.0043 (14)
N2	0.050 (2)	0.038 (2)	0.045 (2)	0.0053 (15)	-0.0034 (17)	-0.0168 (17)
N3	0.0316 (15)	0.0353 (18)	0.0270 (17)	-0.0037 (13)	0.0000 (13)	-0.0064 (14)
N4	0.0309 (17)	0.040 (2)	0.0173 (17)	0.0083 (14)	-0.0009 (13)	-0.0024 (14)
N5	0.0423 (17)	0.0206 (15)	0.0203 (16)	0.0012 (13)	0.0018 (13)	0.0011 (12)
N6	0.0408 (18)	0.0281 (17)	0.0237 (17)	-0.0022 (13)	-0.0059 (14)	-0.0020 (13)
N7	0.0306 (16)	0.0215 (15)	0.043 (2)	0.0029 (12)	0.0067 (14)	0.0004 (14)
N8	0.0343 (17)	0.0204 (16)	0.063 (2)	0.0056 (13)	0.0067 (16)	0.0076 (16)
N9	0.0302 (15)	0.0226 (16)	0.0347 (19)	0.0032 (12)	0.0022 (13)	0.0042 (14)
P1	0.0293 (5)	0.0253 (5)	0.0203 (5)	-0.0001 (3)	0.0018 (3)	-0.0038 (4)
P2	0.0363 (5)	0.0306 (5)	0.0308 (5)	0.0054 (4)	0.0038 (4)	-0.0049 (4)
P3	0.0471 (6)	0.0279 (5)	0.0253 (5)	-0.0067 (4)	0.0005 (4)	-0.0061 (4)
P4	0.0282 (4)	0.0207 (4)	0.0238 (5)	0.0015 (3)	0.0015 (4)	-0.0011 (4)
P5	0.0289 (5)	0.0238 (5)	0.0386 (6)	-0.0009 (4)	0.0064 (4)	0.0009 (4)

P6	0.0277 (4)	0.0225 (5)	0.0310 (5)	0.0028 (4)	0.0011 (4)	-0.0005 (4)
S 1	0.0508 (5)	0.0262 (5)	0.0285 (5)	0.0066 (4)	0.0029 (4)	-0.0005 (4)
Cl1	0.0682 (8)	0.0498 (7)	0.0527 (7)	0.0245 (6)	-0.0079 (6)	0.0022 (6)
Cl2	0.0467 (6)	0.0669 (8)	0.0695 (9)	0.0057 (6)	0.0270 (6)	-0.0005 (7)
C13	0.0988 (10)	0.0427 (7)	0.0501 (8)	-0.0335 (6)	0.0029 (7)	-0.0012 (6)
Cl4	0.0788 (8)	0.0493 (7)	0.0268 (5)	0.0018 (6)	-0.0056 (5)	-0.0129 (5)
C15	0.0415 (5)	0.0398 (6)	0.0578 (7)	-0.0148 (4)	0.0028 (5)	-0.0044 (5)
C16	0.0599 (6)	0.0455 (6)	0.0416 (6)	0.0046 (5)	0.0146 (5)	0.0103 (5)
Cl7	0.0442 (5)	0.0385 (6)	0.0358 (5)	0.0040 (4)	-0.0094 (4)	0.0021 (5)
C18	0.0455 (6)	0.0374 (5)	0.0415 (6)	0.0103 (4)	0.0030 (4)	-0.0115 (5)

Geometric parameters (Å, °)

C1—C2	1.391 (6)	C14'—C15	1.456 (13)
C1—C6	1.379 (6)	C14'—H14A	0.9900
C1—S1	1.782 (4)	C14'—H14B	0.9900
C2—C3	1.383 (6)	C14—C15	1.436 (7)
C2—C7	1.493 (7)	C14—H14C	0.9900
C3—C4	1.385 (8)	C14—H14D	0.9900
С3—Н3	0.9500	C15—N6	1.460 (5)
C4—C5	1.381 (8)	C15—H15A	0.9900
C4—C8	1.508 (7)	C15—H15B	0.9900
C5—C6	1.401 (7)	N1—P2	1.568 (3)
С5—Н5	0.9500	N1—P1	1.612 (3)
С6—Н6	0.9500	N2—P3	1.571 (4)
С7—Н7А	0.9800	N2—P2	1.585 (4)
С7—Н7В	0.9800	N3—P3	1.561 (3)
С7—Н7С	0.9800	N3—P1	1.609 (3)
C8—H8A	0.9800	N4—P1	1.621 (3)
C8—H8B	0.9800	N4—H4N	0.78 (4)
C8—H8C	0.9800	N5—P4	1.638 (3)
C9—N4	1.475 (5)	N6—P4	1.630(3)
C9—C10	1.501 (5)	N6—H6N	0.8800
С9—Н9А	0.9900	N7—P5	1.556 (3)
С9—Н9В	0.9900	N7—P4	1.606 (3)
C10-C11	1.521 (5)	N8—P5	1.581 (3)
C10—H10A	0.9900	N8—P6	1.581 (3)
C10—H10B	0.9900	N9—P6	1.564 (3)
C11—C12	1.520 (5)	N9—P4	1.629 (3)
C11—H11A	0.9900	P1—S1	2.0651 (13)
C11—H11B	0.9900	P2—C12	1.9950 (15)
C12—N5	1.483 (4)	P2—C11	1.9991 (16)
C12—H12A	0.9900	P3—Cl4	1.9986 (15)
C12—H12B	0.9900	P3—C13	1.9995 (15)
C13—N5	1.466 (5)	P5—C15	1.9924 (14)
C13—C14'	1.466 (12)	P5—Cl6	2.0100 (15)
C13—C14	1.516 (7)	P6—C18	1.9984 (13)
С13—Н13А	0.9900	P6—C17	2.0097 (13)
С13—Н13В	0.9900		

C2—C1—C6	121.2 (4)	H14A—C14'—H14B	107.3
C2	121.6 (3)	C15—C14—C13	114.6 (5)
C6—C1—S1	117.1 (4)	C15—C14—H14C	108.6
C3—C2—C1	118.1 (4)	C13—C14—H14C	108.6
C3—C2—C7	119.0 (5)	C15—C14—H14D	108.6
C1—C2—C7	122.9 (4)	C13—C14—H14D	108.6
C2—C3—C4	122.3 (5)	H14CC14H14D	107.6
С2—С3—Н3	118.9	C14—C15—N6	115.7 (4)
С4—С3—Н3	118.9	C14—C15—C14'	40.8 (5)
C5—C4—C3	118.6 (5)	N6—C15—C14'	115.2 (6)
C5—C4—C8	120.3 (6)	C14—C15—H15A	70.0
C3—C4—C8	121.0 (6)	N6-C15-H15A	108.5
C4—C5—C6	120.5 (5)	C14'C15H15A	108.5
С4—С5—Н5	119.8	C14—C15—H15B	134.0
С6—С5—Н5	119.8	N6—C15—H15B	108.5
C1—C6—C5	119.3 (5)	C14'—C15—H15B	108.5
С1—С6—Н6	120.3	H15A—C15—H15B	107.5
С5—С6—Н6	120.3	P2—N1—P1	122.7 (2)
С2—С7—Н7А	109.5	P3—N2—P2	119.2 (2)
С2—С7—Н7В	109.5	P3—N3—P1	122.6 (2)
Н7А—С7—Н7В	109.5	C9—N4—P1	121.8 (3)
С2—С7—Н7С	109.5	C9—N4—H4N	125 (3)
H7A—C7—H7C	109.5	P1—N4—H4N	108 (3)
Н7В—С7—Н7С	109.5	C13—N5—C12	114.8 (3)
C4—C8—H8A	109.5	C13—N5—P4	119.4 (2)
C4—C8—H8B	109.5	C12—N5—P4	116.3 (2)
H8A—C8—H8B	109.5	C15—N6—P4	124.2 (3)
C4—C8—H8C	109.5	C15—N6—H6N	117.9
H8A—C8—H8C	109.5	P4—N6—H6N	117.9
H8B—C8—H8C	109.5	P5—N7—P4	125.84 (18)
N4—C9—C10	112.1 (3)	P5—N8—P6	118.17 (19)
N4—C9—H9A	109.2	P6—N9—P4	124.70 (19)
С10—С9—Н9А	109.2	N3—P1—N1	114.83 (16)
N4—C9—H9B	109.2	N3—P1—N4	113.10 (17)
С10—С9—Н9В	109.2	N1—P1—N4	107.87 (18)
Н9А—С9—Н9В	107.9	N3—P1—S1	108.49 (13)
C9—C10—C11	114.3 (3)	N1—P1—S1	111.01 (12)
C9—C10—H10A	108.7	N4—P1—S1	100.64 (13)
C11—C10—H10A	108.7	N1—P2—N2	119.74 (18)
C9—C10—H10B	108.7	N1—P2—Cl2	110.37 (13)
C11—C10—H10B	108.7	N2—P2—Cl2	107.86 (16)
H10A—C10—H10B	107.6	N1—P2—C11	107.48 (13)
C12—C11—C10	111.6 (3)	N2—P2—Cl1	109.54 (15)
C12—C11—H11A	109.3	Cl2—P2—Cl1	100.08 (7)
C10—C11—H11A	109.3	N3—P3—N2	120.47 (18)
C12—C11—H11B	109.3	N3—P3—Cl4	108.99 (13)
C10—C11—H11B	109.3	N2—P3—Cl4	107.95 (15)
H11A—C11—H11B	108.0	N3—P3—C13	109.50 (13)
N5-C12-C11	112.7 (3)	N2—P3—Cl3	107.62 (16)

N5-C12-H12A	109.0		Cl4—P3—Cl3		100.47 (7)
C11—C12—H12A	109.0		N7—P4—N9		110.77 (15)
N5-C12-H12B	109.0		N7—P4—N6		111.80 (17)
C11—C12—H12B	109.0		N9—P4—N6		108.77 (17)
H12A—C12—H12B	107.8		N7—P4—N5		108.85 (16)
N5—C13—C14'	119.5 (6)		N9—P4—N5		112.82 (16)
N5-C13-C14	109.3 (4)		N6—P4—N5		103.67 (15)
C14'—C13—C14	39.5 (5)		N7—P5—N8		119.88 (16)
N5-C13-H13A	107.4		N7—P5—C15		109.82 (13)
C14'—C13—H13A	107.4		N8—P5—C15		108.40 (14)
C14—C13—H13A	140.0		N7—P5—Cl6		109.32 (13)
N5-C13-H13B	107.4		N8—P5—Cl6		107.14 (15)
C14'—C13—H13B	107.4		Cl5—P5—Cl6		100.52 (6)
C14—C13—H13B	76.0		N9—P6—N8		119.59 (15)
H13A—C13—H13B	107.0		N9—P6—C18		108.95 (13)
C15—C14'—C13	116.5 (9)		N8—P6—C18		108.47 (14)
C15—C14'—H14A	108.2		N9—P6—C17		109.80 (13)
C13—C14'—H14A	108.2		N8—P6—C17		107.69 (15)
C15—C14'—H14B	108.2		Cl8—P6—Cl7		100.67 (6)
C13—C14'—H14B	108.2		C1—S1—P1		100.74 (12)
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N4—H4N····N9 ⁱ		0.77 (4)	2.26 (4)	3.009 (4)	164 (3)

Symmetry codes: (i) x+1/2, -y+1/2, -z+1.

Fig. 1